
CS 598CM: ML for Compilers
and Architecture

Instructor: Charith Mendis

1

Class Statistics Survey Results

Brief Announcements

• Pre-requisites: CS 426, CS 433, CS 421

• The instructor lectures should be considered as crash courses

• Willing to learn as you go

• Reading List: Up on the website

• Paper Selections: Due on August 31st; link on the website.

3

Lecture 2:
Compilers
Crash-course + Optimizations

4

for (i = 0; i < grid_points[0]; i++)
 for (j = 0; j < grid_points[1]; j++)
 for (k = 0; k < grid_points[2]; k++)
 for (m = 0; m < 5; m++)
 add = u[i][j][k][m] - u_exact[m];
 rms[m] = rms[m] + add*add;

Low-level assembly languageHigh-level programming language

…… ……
addq %rcx, %rax
movq %rax, %rcx
salq $6, %rcx
addq %rcx, %rax
imulq $21125, %rdi, %rcx
addq %rax, %rcx
movq %rdx, %rax
salq $2, %rax
addq %rsi, %rax

…… ……

CompilerProgram Hardware

Compilers translate high-level languages
to low-level machine code

Finding a semantic preserving (correct) translation
that generates fast (optimized) code

5

Stages of a Compiler

Low-level
language

High-level
language

Opt 1 Opt 2 Opt 3 Opt N. . .

 Optimization Passes

Compiler

Program Hardware

Lexer Parser Semantic
Analysis

Code
Generation

6

Stages of a Compiler

Low-level
language

High-level
language

Opt 1 Opt 2 Opt 3 Opt N. . .

Compiler

Program Hardware

Lexer Parser Semantic
Analysis

Code
Generation

 Optimization Passes

7

Lexer

for (int i= 0; i <100; i++){
A[i] = A[i+1] + 1;

}

LexerHigh-level
language Tokens

<for> <(> <int> <A> <[> <i> <]>

List or stream of strings with

syntactic meaning

… …

Keywords
Separators
Identifiers

8

Lexer

for (int i= 0; i <100; i++){
A[i] = A[i+1] + 1;

}

LexerHigh-level
language Tokens

What errors does lexer catch?

Usually lexer produces tokens

from regular languages

for (int i= 0; i <100; i++){
A[i] = A[j+1] + 1;

}

for (int i= 0; i <100; i++){
A[i = A[j+1] + 1;

}

for (int i= 0; i <100n; i++){
A[i = A[j+1] + 1;

}

9

Lexer

for (int i= 0; i <100; i++){
A[i] = A[i+1] + 1;

}

LexerHigh-level
language Tokens

What errors does lexer catch?

Usually lexer produces tokens

from regular languages

for (int i= 0; i <100; i++){
A[i] = A[j+1] + 1;

}

for (int i= 0; i <100; i++){
A[i = A[j+1] + 1;

}

for (int i= 0; i <100n; i++){
A[i = A[j+1] + 1;

}

10

Lexer

for (int i= 0; i <100; i++){
A[i] = A[i+1] + 1;

}

LexerHigh-level
language Tokens

What errors does lexer catch?

Usually lexer produces tokens

from regular languages

for (int i= 0; i <100; i++){
A[i] = A[j+1] + 1;

}

for (int i= 0; i <100; i++){
A[i?= A[j+1] + 1;

}

for (int i= 0; i <100n; i++){
A[i = A[j+1] + 1;

}

11

Lexer

for (int i= 0; i <100; i++){
A[i] = A[i+1] + 1;

}

LexerHigh-level
language Tokens

What errors does lexer catch?

Usually lexer produces tokens

from regular languages

for (int i= 0; i <100; i++){
A[i] = A[j+1] + 1;

}

for (int i= 0; i <100; i++){
A[i?= A[j+1] + 1;

}

for (int i= 0; i <100n; i++){
A[i = A[j+1] + 1;

}

12

Parser

LexerHigh-level
language

Tokens
Parser Abstract Syntax Tree (AST)

A = (B + C) * 2;

Stmt

Id Expr

A

=

Expr Expr

Id Id

B C

+

*

Int

2
13

Parser

LexerHigh-level
language

Tokens
Parser Abstract Syntax Tree (AST)

A = (B + C) * 2;

Stmt

Id Expr

A

=

Expr Expr

Id Id

B C

+

*

Int

2

Expressed as a

context-free grammar

14

Parser

LexerHigh-level
language

Tokens
Parser Abstract Syntax Tree (AST)

A = (B + C) * 2;

Stmt

Id Expr

A

=

Expr Expr

Id Id

B C

+

*

Int

2

Expressed as a

context-free grammar

A = (B + C * 2;

A = (B + C * 2

15

Parser

LexerHigh-level
language

Tokens
Parser Abstract Syntax Tree (AST)

• Does not check if variables are defined

• Does not have scopes; variable bindings not defined

• Control flow or data flow information is not explicit

16

Semantic Analysis

LexerHigh-level
language

Tokens
Parser

AST Semantic
Analysis

Intermediate
Representation (IR)

• Clear variable bindings

• Control flow or data flow information embedded and queryable

• Focuses on the meaning of code (what computation does it perform?)

• Many IRs exist even in a single compiler

17

Semantic Analysis

LexerHigh-level
language

Tokens
Parser

AST Semantic
Analysis

Intermediate
Representation (IR)

• Clear variable bindings

• Control flow or data flow information embedded and queryable

• Focuses on the meaning of code (what computation does it perform?)

• Many IRs exist even in a single compiler
Semantics - we can now

optimize!

18

LLVM Intermediate Representation

def foo(a b) a*a + 2*a*b + b*b;
Read function definition:
define double @foo(double %a, double %b) {
entry:
 %multmp = fmul double %a, %a
 %multmp1 = fmul double 2.000000e+00, %a
 %multmp2 = fmul double %multmp1, %b
 %addtmp = fadd double %multmp, %multmp2
 %multmp3 = fmul double %b, %b
 %addtmp4 = fadd double %addtmp, %multmp3
 ret double %addtmp4
}

• Each instruction has a clear meaning

• Control flow or data flow information

embedded

• Data types encoded

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html19

LLVM Intermediate Representation(s)

https://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-llvm

LLVM IR
Selection

DAG
Node

Machine
SDNode

Machine
Instr MCInst Assembly

Instructions

High-level
IRs

Low-level
IRs

Compilers typically use many IRs through out code
generation lifetime

20

LLVM Intermediate Representation(s)

https://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-llvm

LLVM IR
Selection

DAG
Node

Machine
SDNode

Machine
Instr MCInst Assembly

Instructions

High-level
IRs

Low-level
IRs

Compilers typically use many IRs through out code
generation lifetime

Usually focus
on high-level

IRs for
opimization

21

Finishing Up!

LexerHigh-level
language

Tokens
Parser

AST Semantic
Analysis

IR
Optimization

IR Code
Generation

Low-level
Assembly

22

Finishing Up!

LexerHigh-level
language

Tokens
Parser

AST Semantic
Analysis

IR
Optimization

IR Code
Generation

Low-level
Assembly

LLVM IR
Selection

DAG
Node

Machine
SDNode

Machine
Instr MCInst

23

Wait we are just starting!

LexerHigh-level
language

Tokens
Parser

AST Semantic
Analysis

IR
Optimization

IR Code
Generation

Low-level
Assembly

LLVM IR
Selection

DAG
Node

Machine
SDNode

Machine
Instr MCInst

24

Code Optimization

• We are going to spend most time on this in this course

• Usually performed as IR to IR transformations

• Optimizes for an objective or multiple objectives: f(code)

• Runtime

• Memory footprint

• Energy consumption

• Code Size

25

Two types of Optimizations

Input code (I) Output code (O)

Objective (f)

Goal : f(O) > f(I); where > means better

Optimization Pass

26

Two types of Optimizations

Input code (I) Output code (O)

Objective (f)

Goal : f(O) > f(I); where > means better

Step
1

Step
2

Step
n

….

27

Two types of Optimizations
OptimizationInput code (I) Output code (O)

Objective (f)

Type I Type II

• Steps are always Profitable

• Mostly independent
f(O) > f(I)

• Steps may not lead to global profitability

• Mostly mutually-exclusive
f(O) > f(I) ??

Dead Code Elimination, Constant Folding,

Peephole Optimizations …….

Loop fusion, fission, unrolling,

vectorization, parallelization…….

28

Gaming Analogy

https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1704_3

Type I

Known strategy to at least draw

Newell and Simon (1972)

Tic-Tac-Toe

Type II

Do not know if a move will be profitable

immediately

Chess

That’s why it is highly competitive!!
29

Two types of Optimizations
OptimizationInput code (I) Output code (O)

Objective (f)

Type I Type II

• Steps are always Profitable

• Mostly independent
f(O) > f(I)

• Steps may not lead to global profitability

• Mostly mutually-exclusive
f(O) > f(I) ??

Dead Code Elimination, Constant Folding,

Peephole Optimizations …….

Loop fusion, fission, unrolling,

vectorization, parallelization…….

30

Dead Code Elimination

 int foo(void)
 {
 int a = 24;
 int b = 25;
 int c;
 c = a * 4;
 return c;
 b = 24;
 return 0;
 }

https://en.wikipedia.org/wiki/Dead_code_elimination
31

Dead Code Elimination

 int foo(void)
 {
 int a = 24;
 int b = 25;
 int c;
 c = a * 4;
 return c;
 b = 24;
 return 0;
 }

https://en.wikipedia.org/wiki/Dead_code_elimination

Always a good idea to

get rid of unwanted statements

Always a good idea to

get rid of unreachable code

32

Dead Code Elimination

 int foo(void)
 {
 int a = 24;
 int b = 25;
 int c;
 c = a * 4;
 return c;
 b = 24;
 return 0;
 }

Always a good idea to

get rid of unwanted statements

Always a good idea to

get rid of unreachable code

 int foo(void)
 {
 int a = 24;
 int c;
 c = a * 4;
 return c;
 }

No optimization decision making needed!

https://en.wikipedia.org/wiki/Dead_code_elimination
33

Two types of Optimizations
OptimizationInput code (I) Output code (O)

Objective (f)

Type I Type II

• Steps are always Profitable

• Mostly independent
f(O) > f(I)

• Steps may not lead to global profitability

• Mostly mutually-exclusive
f(O) > f(I) ??

Dead Code Elimination, Constant Folding,

Peephole Optimizations …….

Loop fusion, fission, unrolling,

vectorization, parallelization…….

34

Hardware Vector Units

Single Instruction Multiple Data execution

35

Intel Vector-ISA Generations

36

Vectorization
Independent and Similar statements can be vectorized

Scalar Code

Vector Packs

a[0] = b[0] + c[0]
a[1] = b[1] + c[1]

{a[0],a[1]} = {b[0],b[1]} + {c[0],c[1]}

Vector Code
Single Instruction Multiple Data (SIMD)

37

Vectorization
• Are Vectorization opportunities always independent?

• Are Vectorization opportunities always globally profitable?

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute

2 instructions at a time
What are all vectorization possibilities?

38

Vectorization
• Are Vectorization opportunities always independent?

• Are Vectorization opportunities always globally profitable?

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute

2 instructions at a time
What are all vectorization possibilities?

{A1,A2}

39

Vectorization
• Are Vectorization opportunities always independent?

• Are Vectorization opportunities always globally profitable?

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute

2 instructions at a time
What are all vectorization possibilities?

{A1,A2}
{A1,A3}

40

Vectorization
• Are Vectorization opportunities always independent?

• Are Vectorization opportunities always globally profitable?

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute

2 instructions at a time
What are all vectorization possibilities?

{A1,A2}
{A1,A3}
{A2,A3}

41

Vectorization
• Are Vectorization opportunities always independent? NO

• Are Vectorization opportunities always globally profitable?

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute

2 instructions at a time
What are all vectorization possibilities?

{A1,A2}
{A1,A3}
{A2,A3}

42

Vectorization
• Are Vectorization opportunities always independent? NO

• Are Vectorization opportunities always globally profitable? NO

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute

2 instructions at a time
What are all vectorization possibilities?

{A1,A2}
{A1,A3}
{A2,A3}

43

How to make step decisions?

• Enumerate all possible choices and select the most profitable?

• Intelligent Search
• Meta Optimization: improving compiler heuristics with machine learning

(PLDI 2003)

• Learned Optimizations
• Compiler Auto-vectorization using Imitation Learning (NeurIPS 2019)

• NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement

Learning (CGO 2020)

44

Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes?

45

Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes?

46

Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes? Run them in sequence

….

47

Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes? Run them in sequence

….

Faces the same challenges at Type II Optimizations:

Now passes are the steps
Phase Ordering Problem

48

Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes? Run them in sequence

….

Faces the same challenges at Type II Optimizations:

Now passes are the steps
Phase Ordering Problem (RL solution in the reading list)

49

Next Lecture

• Anatomy of a type II compiler optimization pass

• Exposing Tunable parameters

• DSLs and Domain Specific Optimizations

• Examples on Learned Optimization and Cost Models

50

How to select papers?

• Familiar with the subject area

• Read the contributions and the motivation. Sounds Interesting?

• Not all papers are of equal difficulty to read

• Difficulty of the paper taken into account during grading

• Dependency of the paper on related work also taken into account

51

Any Questions?

52

