
CS 598CM: ML for Compilers 
and Architecture

Instructor: Charith Mendis
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Class Statistics Survey Results



Brief Announcements

• Pre-requisites: CS 426, CS 433, CS 421

• The instructor lectures should be considered as crash courses

• Willing to learn as you go


• Reading List: Up on the website


• Paper Selections: Due on August 31st; link on the website.
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Lecture 2: 
Compilers
Crash-course + Optimizations
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for (i = 0; i < grid_points[0]; i++)  
  for (j = 0; j < grid_points[1]; j++)  
    for (k = 0; k < grid_points[2]; k++)  
    for (m = 0; m < 5; m++)  
       add = u[i][j][k][m] - u_exact[m]; 
       rms[m] = rms[m] + add*add; 

Low-level assembly languageHigh-level programming language

…… …… 
addq    %rcx, %rax 
movq    %rax, %rcx 
salq    $6, %rcx 
addq    %rcx, %rax 
imulq   $21125, %rdi, %rcx 
addq    %rax, %rcx 
movq    %rdx, %rax 
salq    $2, %rax 
addq    %rsi, %rax 

…… ……

CompilerProgram Hardware

Compilers translate high-level languages  
to low-level machine code

Finding a semantic preserving (correct) translation  
that generates fast (optimized) code
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Stages of a Compiler

Low-level  
language

High-level  
language

Opt 1 Opt 2 Opt 3 Opt N. . .

 Optimization Passes

Compiler

Program Hardware

Lexer Parser Semantic 
Analysis

Code 
Generation
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Lexer

for (int i= 0; i <100; i++){
A[i] = A[i+1] + 1;

}

LexerHigh-level  
language Tokens

<for> <(> <int>   <A> <[> <i>  <]> 

List or stream of strings with 

syntactic meaning 

… …

Keywords
Separators
Identifiers
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Lexer

for (int i= 0; i <100; i++){
A[i] = A[i+1] + 1;

}

LexerHigh-level  
language Tokens

What errors does lexer catch?

Usually lexer produces tokens 


from regular languages


for (int i= 0; i <100; i++){
A[i] = A[j+1] + 1;

}

for (int i= 0; i <100; i++){
A[i = A[j+1] + 1;

}

for (int i= 0; i <100n; i++){
A[i = A[j+1] + 1;

}
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Parser

LexerHigh-level  
language

Tokens
Parser Abstract Syntax Tree (AST)

A = (B + C) * 2;

Stmt

Id Expr

A

=

Expr Expr

Id Id

B C

+

*

Int

2
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Parser

LexerHigh-level  
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Parser

LexerHigh-level  
language

Tokens
Parser Abstract Syntax Tree (AST)

• Does not check if variables are defined


• Does not have scopes; variable bindings not defined


• Control flow or data flow information is not explicit
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Semantic Analysis

LexerHigh-level  
language

Tokens
Parser

AST Semantic 
Analysis

Intermediate 
Representation (IR)

• Clear variable bindings


• Control flow or data flow information embedded and queryable


• Focuses on the meaning of code (what computation does it perform?)


• Many IRs exist even in a single compiler 
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Semantic Analysis

LexerHigh-level  
language

Tokens
Parser

AST Semantic 
Analysis

Intermediate 
Representation (IR)

• Clear variable bindings


• Control flow or data flow information embedded and queryable


• Focuses on the meaning of code (what computation does it perform?)


• Many IRs exist even in a single compiler 
Semantics - we can now 

optimize!
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LLVM Intermediate Representation

def foo(a b) a*a + 2*a*b + b*b;
Read function definition:
define double @foo(double %a, double %b) {
entry:
  %multmp = fmul double %a, %a
  %multmp1 = fmul double 2.000000e+00, %a
  %multmp2 = fmul double %multmp1, %b
  %addtmp = fadd double %multmp, %multmp2
  %multmp3 = fmul double %b, %b
  %addtmp4 = fadd double %addtmp, %multmp3
  ret double %addtmp4
}

• Each instruction has a clear meaning

• Control flow or data flow information 

embedded

• Data types encoded

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html19



LLVM Intermediate Representation(s)

https://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-llvm

LLVM IR
Selection

DAG 
Node

Machine
SDNode

Machine
Instr MCInst Assembly 

Instructions

High-level 
IRs

Low-level 
IRs

Compilers typically use many IRs through out code 
generation lifetime
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LLVM Intermediate Representation(s)

https://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-llvm

LLVM IR
Selection

DAG 
Node

Machine
SDNode

Machine
Instr MCInst Assembly 

Instructions

High-level 
IRs

Low-level 
IRs

Compilers typically use many IRs through out code 
generation lifetime

Usually focus 
on high-level 

IRs for 
opimization 
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Finishing Up!

LexerHigh-level  
language

Tokens
Parser

AST Semantic 
Analysis

IR
Optimization

IR Code 
Generation

Low-level 
Assembly
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Wait we are just starting!

LexerHigh-level  
language

Tokens
Parser

AST Semantic 
Analysis

IR
Optimization

IR Code 
Generation

Low-level 
Assembly

LLVM IR
Selection

DAG 
Node

Machine
SDNode

Machine
Instr MCInst
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Code Optimization

• We are going to spend most time on this in this course


• Usually performed as IR to IR transformations


• Optimizes for an objective or multiple objectives: f(code) 

• Runtime

• Memory footprint

• Energy consumption

• Code Size 
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Two types of Optimizations

Input code (I) Output code (O)

Objective (f)

Goal : f(O) > f(I); where > means better

Optimization Pass
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Two types of Optimizations

Input code (I) Output code (O)

Objective (f)

Goal : f(O) > f(I); where > means better

Step 
1

Step 
2

Step 
n

….
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Two types of Optimizations
OptimizationInput code (I) Output code (O)

Objective (f)

Type I Type II

• Steps are always Profitable


• Mostly independent
f(O) > f(I)

• Steps may not lead to global profitability


• Mostly mutually-exclusive
f(O) > f(I) ??

Dead Code Elimination, Constant Folding, 

Peephole Optimizations …….

Loop fusion, fission, unrolling, 

vectorization, parallelization…….
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Gaming Analogy

https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1704_3

Type I

Known strategy to at least draw 

Newell and Simon (1972)

Tic-Tac-Toe

Type II

Do not know if a move will be profitable

immediately

Chess

That’s why it is highly competitive!!
29



Two types of Optimizations
OptimizationInput code (I) Output code (O)

Objective (f)

Type I Type II

• Steps are always Profitable


• Mostly independent
f(O) > f(I)

• Steps may not lead to global profitability


• Mostly mutually-exclusive
f(O) > f(I) ??

Dead Code Elimination, Constant Folding, 

Peephole Optimizations …….

Loop fusion, fission, unrolling, 

vectorization, parallelization…….
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Dead Code Elimination

 int foo(void) 
 { 
   int a = 24; 
   int b = 25; 
   int c; 
   c = a * 4; 
   return c; 
   b = 24; 
   return 0; 
 }

https://en.wikipedia.org/wiki/Dead_code_elimination
31



Dead Code Elimination

 int foo(void) 
 { 
   int a = 24; 
   int b = 25; 
   int c; 
   c = a * 4; 
   return c; 
   b = 24; 
   return 0; 
 }

https://en.wikipedia.org/wiki/Dead_code_elimination

Always a good idea to 

get rid of unwanted statements

Always a good idea to 

get rid of unreachable code
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Dead Code Elimination

 int foo(void) 
 { 
   int a = 24; 
   int b = 25; 
   int c; 
   c = a * 4; 
   return c; 
   b = 24; 
   return 0; 
 }

Always a good idea to 

get rid of unwanted statements

Always a good idea to 

get rid of unreachable code

 int foo(void) 
 { 
   int a = 24; 
   int c; 
   c = a * 4; 
   return c; 
 }

No optimization decision making needed!

https://en.wikipedia.org/wiki/Dead_code_elimination
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Two types of Optimizations
OptimizationInput code (I) Output code (O)

Objective (f)

Type I Type II

• Steps are always Profitable


• Mostly independent
f(O) > f(I)

• Steps may not lead to global profitability


• Mostly mutually-exclusive
f(O) > f(I) ??

Dead Code Elimination, Constant Folding, 

Peephole Optimizations …….

Loop fusion, fission, unrolling, 

vectorization, parallelization…….
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Hardware Vector Units

Single Instruction Multiple Data execution 
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Intel Vector-ISA Generations
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Vectorization
Independent and Similar statements can be vectorized 

Scalar Code

Vector Packs

a[0] = b[0] + c[0]
a[1] = b[1] + c[1]

{a[0],a[1]} = {b[0],b[1]} + {c[0],c[1]}

Vector Code
Single Instruction Multiple Data (SIMD)
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Vectorization
• Are Vectorization opportunities always independent?

• Are Vectorization opportunities always globally profitable?

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute 

2 instructions at a time
What are all vectorization possibilities?
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Vectorization
• Are Vectorization opportunities always independent? NO
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A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute 

2 instructions at a time
What are all vectorization possibilities?

{A1,A2} 
{A1,A3} 
{A2,A3} 

42



Vectorization
• Are Vectorization opportunities always independent? NO

• Are Vectorization opportunities always globally profitable? NO

A1 = L[0] + L[4]
A2 = L[3] + L[5]
A3 = L[1] + L[5]

Assume that the vector unit can only execute 

2 instructions at a time
What are all vectorization possibilities?

{A1,A2} 
{A1,A3} 
{A2,A3} 

43



How to make step decisions?

• Enumerate all possible choices and select the most profitable?


• Intelligent Search 
• Meta Optimization: improving compiler heuristics with machine learning 

(PLDI 2003)


• Learned Optimizations 
• Compiler Auto-vectorization using Imitation Learning (NeurIPS 2019)

• NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement 

Learning (CGO 2020)
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Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes?

45



Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes?

46



Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes? Run them in sequence

….
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Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes? Run them in sequence

….

Faces the same challenges at Type II Optimizations: 

Now passes are the steps
Phase Ordering Problem

48



Multiple Optimization Passes

Pass 1 Pass 2 Pass 3 Pass n

How do we compose these passes? Run them in sequence

….

Faces the same challenges at Type II Optimizations: 

Now passes are the steps
Phase Ordering Problem (RL solution in the reading list)
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Next Lecture

• Anatomy of a type II compiler optimization pass


• Exposing Tunable parameters


• DSLs and Domain Specific Optimizations


• Examples on Learned Optimization and Cost Models
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How to select papers?

• Familiar with the subject area


• Read the contributions and the motivation. Sounds Interesting?


• Not all papers are of equal difficulty to read

• Difficulty of the paper taken into account during grading

• Dependency of the paper on related work also taken into account
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Any Questions?
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