
CS 598CM: ML for Compilers
and Architecture

Instructor: Charith Mendis

1

Brief Announcements

• Reading List: Live on the website!

• Paper Selections: Due on August 31st

• Paper Reviews: We will use hotCRP to facilitate review writing. We will
change the fields of the reviews.

• Resources and tutorials: Towards the bottom of the website

2

Recap

• Compiler Stages

• Lexer => Parser => Sema => Optimization => Code Generation

• Two types of compiler optimizations

• Phase ordering problem

3

Lecture 3:
Compiler Optimizations
Optimizations + DSLs

4

Anatomy of an Optimization Pass

Input code (I) Output code (O)

Objective (f)

Step
1

Step
2

Step
n

….

5

Anatomy of an Optimization Pass

Objective (f)

Decide what to
Optimize

Transform
Code

Decide what and
how to OptimizeInput code (I) Output code (O)

6

Anatomy of an Optimization Pass

Input code (I) Output code (O)

Objective (f)

Decide what and
how to Optimize

Transform
Code

Optimization
Decision
Making

Transformation
Machinery

7

Robot Analogy

B

A

Task: Move from A to B cheaply

8

Robot Analogy

B

A

Task: Move from A to B cheaply

1. Plan

9

Robot Analogy

B

A

Task: Move from A to B cheaply

1. Plan

2. Execute

10

Robot Analogy

B

A

Task: Move from A to B cheaply

1. Plan

2. Execute

11

Anatomy of an Optimization Pass

Input code (I) Output code (O)

Objective (f)

Decide what and
how to Optimize

Transform
Code

Optimization
Decision
Making

Transformation
Machinery

1 2

12

Optimization Decision Making

Input
IR

Output
IR

Faster and Correct
Output IR

Opt

13

Optimization Decision Making

Transformation
Space

Input
IR

Output
IR

Faster and Correct
Output IR

Opt

14

Optimization Decision Making
semantically equivalent

transformations

Transformation
Space

Input
IR

Output
IR

Faster and Correct
Output IR

Opt

15

Optimization Decision Making
semantically equivalent

transformations

Subspace

Transformation
Space

Input
IR

Output
IR

Faster and Correct
Output IR

Opt

16

Charith Mendis04/02/2020

Subspace

semantically equivalent

transformations

Transformation
Space

Cost
Model

Input
IR

Output
IROpt

Faster and Correct
Output IR

Optimization Decision Making

17

Charith Mendis04/02/2020

Optimization Decision Making

Subspace

semantically equivalent

transformations

Transformation
Space

Optimization
Strategy

Cost
Model

Input
IR

Output
IROpt

Faster and Correct
Output IR

18

Charith Mendis04/02/2020

Optimization Decision Making

Subspace

semantically equivalent

transformations

Transformation
Space

Optimization
Strategy

Cost
Model

Input
IR

Output
IROpt

Faster and Correct
Output IR

19

Charith Mendis04/02/2020

Optimization Decision Making

Subspace

semantically equivalent

transformations

Transformation
Space

Optimization
Strategy

Cost
Model

Input
IR

Output
IROpt

Faster and Correct
Output IR

20

Charith Mendis04/02/2020

Subspace

semantically equivalent

transformations

Legal
Transformations

Optimal Ground Truth
Runtime

Ideal

Transformation
Space

Optimization
Strategy

Cost
Model

Input
IR

Output
IROpt

Faster and Correct
Output IR

Ideal

Optimization Decision Making

21

Robot Analogy

B

A

1. Plan

2. Execute

Transformation
Space

Optimization
Strategy

Cost
Model

Task: Move from A to B cheaply

22

Robot Analogy

B

A

Task: Move from A to B cheaply

1. Plan

2. Execute

Transformation
Space

Optimization
Strategy

Cost
Model

1

1

1

1

1

1
1

11

1INF

INF

23

Robot Analogy

B

A

Task: Move from A to B cheaply

1. Plan

2. Execute

Transformation
Space

Optimization
Strategy

Cost
Model

1

Cost: 7

24

Robot Analogy

B

A

Task: Move from A to B cheaply

1. Plan

2. Execute

Transformation
Space

Optimization
Strategy

Cost
Model

Cost: 5

25

Charith Mendis04/02/2020

Independent and Isomorphic statements can be vectorized

Scalar Code

Vector Packs

a[0] = b[0] + c[0]
a[1] = b[1] + c[1]

{a[0],a[1]} = {b[0],b[1]} + {c[0],c[1]}

Vector Code

Vectorization

Larsen & Amarasinghe “Exploiting Superword Level Parallelism with Multimedia Instruction Sets” [PLDI’00]

Single Instruction Multiple Data (SIMD)

26

Charith Mendis04/02/2020

{S1,S2}
{S2,S3}
{S1,S3}

• Find independent and isomorphic
statements

• Not all vector packs can exist with
each other

• Need to select the most profitable
packing strategy

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]
S3 : A3 = L[7] / L[4]
S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

{S4,S5}
{S5,S6}
{S4,S6}

Statement Packing Problem

Transformation Space

27

Charith Mendis04/02/2020

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]
S3 : A3 = L[7] / L[4]
S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

0 vector
0 packing
0 unpacking

Instruction Breakdown

Vector codeScalar code

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]

S3 : A3 = L[7] / L[4]

S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

Statement packing strategy 1

28

Charith Mendis04/02/2020

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]
S3 : A3 = L[7] / L[4]
S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]}

S3 : A3 = L[7] / L[4]

S4 : A4 = L[1] - A2
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1}

Non-isomorphic

Vector codeScalar code

4 vector
0 packing
0 unpacking

Instruction Breakdown

There are costs associated with vectorization

29

Charith Mendis04/02/2020

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]
S3 : A3 = L[7] / L[4]
S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]}
SU1 : A1 = unpack(SV1,1)

S3 : A3 = L[7] / L[4]

S4 : A4 = L[1] - A2
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1}

Vector codeScalar code

4 vector
0 packing
1 unpacking

Instruction Breakdown

There are costs associated with vectorization

30

Charith Mendis04/02/2020

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]
S3 : A3 = L[7] / L[4]
S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]}
SU1 : A1 = unpack(SV1,1)

S3 : A3 = L[7] / L[4]
SP1 : {A3,A1} = pack(A3,A1)
S4 : A4 = L[1] - A2
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1}

4 vector
1 packing
1 unpacking

Instruction Breakdown

Vector codeScalar code

There are costs associated with vectorization

31

Charith Mendis04/02/2020

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]
S3 : A3 = L[7] / L[4]
S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]}
SU1 : A1 = unpack(SV1,1)
SU2 : A2 = unpack(SV1,2)
S3 : A3 = L[7] / L[4]
SP1 : {A3,A1} = pack(A3,A1)
S4 : A4 = L[1] - A2
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1}

4 vector
1 packing
2 unpacking

Instruction Breakdown

Vector codeScalar code

There are costs associated with vectorization

32

Charith Mendis04/02/2020

S1 : A1 = L[5] / L[2]
S2 : A2 = L[6] / L[3]
S3 : A3 = L[7] / L[4]
S4 : A4 = L[1] - A2
S5 : A5 = L[2] - A3
S6 : A6 = L[3] - A1

SV1 : {A2,A3} = {L[6],L[7]} / {L[3],L[4]}
SU1 : L[2] = unpack(SLV1,2)
S1 : A1 = L[5] / L[2]
SU2 : L[3] = unpack(SLV2,1)
SV2 : {A4,A5} = {L[1],L[2]} - {A2,A3}
S6 : A6 = L[3] - A1

5 vector
0 packing
2 unpacking

Instruction Breakdown

Vector codeScalar code

Statement packing strategy 2

33

Charith Mendis04/02/2020

Strategy 1

Liu et. al [PLDI’12]

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]}
SU1 : A1 = unpack(SV1,1)
SU2 : A2 = unpack(SV1,2)
S3 : A3 = L[7] / L[4]
SP1 : {A3,A1} = pack(A3,A1)
S4 : A4 = L[1] - A2
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1}

SV1 : {A2,A3} = {L[6],L[7]} / {L[3],L[4]}
SU1 : L[2] = unpack(SLV1,2)
S1 : A1 = L[5] / L[2]
SU2 : L[3] = unpack(SLV2,1)
SV2 : {A4,A5} = {L[1],L[2]} - {A2,A3}
S6 : A6 = L[3] - A1

5 vector
0 packing
2 unpacking

4 vector
1 packing
2 unpacking

Strategy 2

Optimal

Different vectorization schemes have different
profitability

34

Machine Learning Influence
Optimization

Strategy

• Greedy / Heuristic

Linear

Data-driven Data-drivenAutomated solutions

Traditional solutions

Cost
Model

Imitation Learning LSTM based Cost Model
Program Logics

10/19 10/05
(related reading)

Transformation
Space

Hand-written

• Integer Linear
Programming

• Dynamic Programing

• Analytical

Non-linear

35

Domain Specific Languages

• Programming model specific to one domain

• Image / Array Processing - Halide, MATLAB

• Sparse Tensor Computations - TACO

• Tensor Algebra - Tensorflow, Pytorch (frameworks)

• Graphs - GraphIt, Gunrock

• Genomic Computations - Seq

• Usually comes with a set of domain specific optimizations

36

Halide
• Main idea: Separate algorithm specification from optimizations

(schedules)

• Halide Video

• https://www.youtube.com/watch?v=3uiEyEKji0M&t=3s

• Optimization objective: find the best schedule or optimization sequence
for a given Halide algorithm

37

https://www.youtube.com/watch?v=3uiEyEKji0M&t=3s

Tensorflow
• Model tensor manipulating programs

• Uses the XLA compiler to target GPUs, TPUs and CPUs

• Main abstraction: Computational Graphs

IR: High Level Operations (HLO)

38

XLA Compiler
• (Most) optimizations can be expressed as computational graph rewrites

https://cs.stanford.edu/~padon/taso-sosp19.pdf

TASO [SOSP’19]

39

Machine Learning Influence
Optimization

Strategy

Data-driven Data-drivenAutomated solutions

Cost
Model

Program Logics

10/26: Tree Search
(Halide)

10/10: GNN based
Cost Model

(XLA)

Transformation
Space

10/31: Gradient-based
Methods

(TVM)

40

XLA Compiler
• (Most) optimizations can be expressed as computational graph rewrites

41

• What if there are 2 or rewrites that
can be performed at the same
time?

Halide
• Optimization objective: find the best schedule or optimization sequence

for a given Halide algorithm

42

Paper Presentation
• Paper presentations assigned on September 4th

• Week before: Meet instructor to discuss the presentation plan (compulsory!)

• Use this time to ask questions and discuss the outline

• Presentation slides are due when reviews are due for that class

• Submit using the hotCRP system

• During the class: Be present in class (compulsory!)

• Deliver a 30 min presentation on the paper

• Answer questions for the following 20 min

• Final 25 min for open discussion on the paper (lead by the instructor)

43

Paper Presentation

• After class: Summarize the discussion of the paper

• Submit the summary by the start of the next class

• First presentation on September 12th

• Whaley and Dongarra, “Automatically Tuned Linear Algebra Software”

(SC 1998)

• 30 min presentation

• https://amturing.acm.org/award_winners/dongarra_3406337.cfm

44

http://homes.soic.indiana.edu/rcwhaley/papers/atlas_sc98.ps
https://amturing.acm.org/award_winners/dongarra_3406337.cfm

Any Questions?

45

