
CS 598CM: ML for Compilers 
and Architecture

Instructor: Charith Mendis
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Brief Announcements

• Reading List: Live on the website!


• Paper Selections: Due on August 31st


• Paper Reviews: We will use hotCRP to facilitate review writing. We will 
change the fields of the reviews.


• Resources and tutorials: Towards the bottom of the website
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Recap

• Compiler Stages

• Lexer => Parser => Sema => Optimization => Code Generation


• Two types of compiler optimizations


• Phase ordering problem
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Lecture 3: 
Compiler Optimizations
Optimizations + DSLs
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Anatomy of an Optimization Pass
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Objective (f)
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Anatomy of an Optimization Pass
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Decide what to 
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Anatomy of an Optimization Pass
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Robot Analogy

B

A

Task: Move from A to B cheaply
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Anatomy of an Optimization Pass
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Optimization Decision Making

Input 
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Output IR
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Optimization Decision Making
semantically equivalent 
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Subspace

semantically equivalent 

transformations
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Robot Analogy
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Independent and Isomorphic statements can be vectorized 

Scalar Code

Vector Packs

a[0] = b[0] + c[0] 
a[1] = b[1] + c[1]

{a[0],a[1]} = {b[0],b[1]} + {c[0],c[1]}

Vector Code

Vectorization

Larsen & Amarasinghe “Exploiting Superword Level Parallelism with Multimedia Instruction Sets” [PLDI’00]

Single Instruction Multiple Data (SIMD)
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{S1,S2} 
{S2,S3} 
{S1,S3}

• Find independent and isomorphic 
statements


• Not all vector packs can exist with 
each other


• Need to select the most profitable 
packing strategy

S1 : A1 = L[5] / L[2] 
S2 : A2 = L[6] / L[3] 
S3 : A3 = L[7] / L[4] 
S4 : A4 = L[1] - A2 
S5 : A5 = L[2] - A3 
S6 : A6 = L[3] - A1

{S4,S5} 
{S5,S6} 
{S4,S6}

Statement Packing Problem

Transformation Space
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S1 : A1 = L[5] / L[2] 
S2 : A2 = L[6] / L[3] 
S3 : A3 = L[7] / L[4] 
S4 : A4 = L[1] - A2 
S5 : A5 = L[2] - A3 
S6 : A6 = L[3] - A1

0 vector
0 packing
0 unpacking

Instruction Breakdown

Vector codeScalar code

S1  : A1 = L[5] / L[2] 
S2  : A2 = L[6] / L[3] 

S3  : A3 = L[7] / L[4] 

S4  : A4 = L[1] - A2 
S5  : A5 = L[2] - A3 
S6  : A6 = L[3] - A1

Statement packing strategy 1
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S1 : A1 = L[5] / L[2] 
S2 : A2 = L[6] / L[3] 
S3 : A3 = L[7] / L[4] 
S4 : A4 = L[1] - A2 
S5 : A5 = L[2] - A3 
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]} 

S3  : A3 = L[7] / L[4] 

S4  : A4 = L[1] - A2 
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1} 

Non-isomorphic

Vector codeScalar code

4 vector
0 packing
0 unpacking

Instruction Breakdown

There are costs associated with vectorization
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S1 : A1 = L[5] / L[2] 
S2 : A2 = L[6] / L[3] 
S3 : A3 = L[7] / L[4] 
S4 : A4 = L[1] - A2 
S5 : A5 = L[2] - A3 
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]} 
SU1 : A1 = unpack(SV1,1) 

S3  : A3 = L[7] / L[4] 

S4  : A4 = L[1] - A2 
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1} 

Vector codeScalar code

4 vector
0 packing
1 unpacking

Instruction Breakdown

There are costs associated with vectorization
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S1 : A1 = L[5] / L[2] 
S2 : A2 = L[6] / L[3] 
S3 : A3 = L[7] / L[4] 
S4 : A4 = L[1] - A2 
S5 : A5 = L[2] - A3 
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]} 
SU1 : A1 = unpack(SV1,1) 

S3  : A3 = L[7] / L[4] 
SP1 : {A3,A1} = pack(A3,A1) 
S4  : A4 = L[1] - A2 
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1} 

4 vector
1 packing
1 unpacking

Instruction Breakdown

Vector codeScalar code

There are costs associated with vectorization
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S1 : A1 = L[5] / L[2] 
S2 : A2 = L[6] / L[3] 
S3 : A3 = L[7] / L[4] 
S4 : A4 = L[1] - A2 
S5 : A5 = L[2] - A3 
S6 : A6 = L[3] - A1

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]} 
SU1 : A1 = unpack(SV1,1) 
SU2 : A2 = unpack(SV1,2) 
S3  : A3 = L[7] / L[4] 
SP1 : {A3,A1} = pack(A3,A1) 
S4  : A4 = L[1] - A2 
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1} 

4 vector
1 packing
2 unpacking

Instruction Breakdown

Vector codeScalar code

There are costs associated with vectorization
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S1 : A1 = L[5] / L[2] 
S2 : A2 = L[6] / L[3] 
S3 : A3 = L[7] / L[4] 
S4 : A4 = L[1] - A2 
S5 : A5 = L[2] - A3 
S6 : A6 = L[3] - A1

SV1 : {A2,A3} = {L[6],L[7]} / {L[3],L[4]} 
SU1 : L[2] = unpack(SLV1,2) 
S1  : A1 = L[5] / L[2] 
SU2 : L[3] = unpack(SLV2,1) 
SV2 : {A4,A5} = {L[1],L[2]} - {A2,A3} 
S6  : A6 = L[3] - A1

5 vector
0 packing
2 unpacking

Instruction Breakdown

Vector codeScalar code

Statement packing strategy 2
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Strategy 1

Liu et. al [PLDI’12]

SV1 : {A1,A2} = {L[5],L[6]} / {L[2],L[3]} 
SU1 : A1 = unpack(SV1,1) 
SU2 : A2 = unpack(SV1,2) 
S3  : A3 = L[7] / L[4] 
SP1 : {A3,A1} = pack(A3,A1) 
S4  : A4 = L[1] - A2 
SV2 : {A5,A6} = {L[2],L[3]} - {A3,A1} 

SV1 : {A2,A3} = {L[6],L[7]} / {L[3],L[4]} 
SU1 : L[2] = unpack(SLV1,2) 
S1  : A1 = L[5] / L[2] 
SU2 : L[3] = unpack(SLV2,1) 
SV2 : {A4,A5} = {L[1],L[2]} - {A2,A3} 
S6  : A6 = L[3] - A1

5 vector
0 packing
2 unpacking

4 vector
1 packing
2 unpacking

Strategy 2

Optimal

Different vectorization schemes have different  
profitability
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Machine Learning Influence
Optimization 

Strategy

• Greedy / Heuristic

Linear 

Data-driven Data-drivenAutomated solutions

Traditional solutions

Cost  
Model

Imitation Learning LSTM based Cost Model
Program Logics

10/19 10/05  
(related reading)

Transformation 
Space

Hand-written

• Integer Linear 
Programming

• Dynamic Programing

• Analytical 

Non-linear 
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Domain Specific Languages

• Programming model specific to one domain

• Image / Array Processing - Halide, MATLAB

• Sparse Tensor Computations - TACO

• Tensor Algebra - Tensorflow, Pytorch (frameworks)

• Graphs - GraphIt, Gunrock

• Genomic Computations - Seq


• Usually comes with a set of domain specific optimizations
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Halide
• Main idea: Separate algorithm specification from optimizations 

(schedules)


• Halide Video


• https://www.youtube.com/watch?v=3uiEyEKji0M&t=3s


• Optimization objective: find the best schedule or optimization sequence 
for a given Halide algorithm
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https://www.youtube.com/watch?v=3uiEyEKji0M&t=3s


Tensorflow
• Model tensor manipulating programs


• Uses the XLA compiler to target GPUs, TPUs and CPUs


• Main abstraction: Computational Graphs

IR: High Level Operations (HLO)
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XLA Compiler
• (Most) optimizations can be expressed as computational graph rewrites

https://cs.stanford.edu/~padon/taso-sosp19.pdf

TASO [SOSP’19]
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Machine Learning Influence
Optimization 

Strategy

Data-driven Data-drivenAutomated solutions

Cost  
Model

Program Logics

10/26: Tree Search 
(Halide)

10/10: GNN based  
Cost Model 

(XLA)

Transformation 
Space

10/31: Gradient-based  
Methods 

(TVM)
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XLA Compiler
• (Most) optimizations can be expressed as computational graph rewrites

41

• What if there are 2 or rewrites that 
can be performed at the same 
time?



Halide
• Optimization objective: find the best schedule or optimization sequence 

for a given Halide algorithm
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Paper Presentation
• Paper presentations assigned on September 4th


• Week before: Meet instructor to discuss the presentation plan (compulsory!)

• Use this time to ask questions and discuss the outline

• Presentation slides are due when reviews are due for that class

• Submit using the hotCRP system


• During the class: Be present in class (compulsory!)

• Deliver a 30 min presentation on the paper

• Answer questions for the following 20 min

• Final 25 min for open discussion on the paper (lead by the instructor)
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Paper Presentation

• After class: Summarize the discussion of the paper

• Submit the summary by the start of the next class


• First presentation on September 12th

• Whaley and Dongarra, “Automatically Tuned Linear Algebra Software” 

(SC 1998)

• 30 min presentation 

• https://amturing.acm.org/award_winners/dongarra_3406337.cfm
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http://homes.soic.indiana.edu/rcwhaley/papers/atlas_sc98.ps
https://amturing.acm.org/award_winners/dongarra_3406337.cfm


Any Questions?
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