
CS 598CM: ML for Compilers
and Architecture

Instructor: Charith Mendis

1

Brief Announcements

• Paper Selections: Due on today, presentations start Sept 12th

• Paper Reviews:
• Due for each paper 2 days prior to the discussion date

• Instructions will emailed before class next week

• Campuswire: Let’s use Campuswire to discuss papers and more ML
related work!

2

Recap

• Anatomy of a compiler optimization pass

• Domain Specific Languages

3

Lecture 4:

DSLs + ML in Architecture

4

Deep Learning Stack
HardwareWorkload Language Compiler

5

Computational Graphs
• A data-flow graph with tensor operations

Example: Inception

Can grow to 1000s of nodes

 Szegedy et. al “Going Deeper with Convolutions”

Optimization: Operator Fusion

Zhou et. al “Transferable Graph Optimizers for ML Compilers”

HW: Tensor Processing Unit

Jouppi et. al “In-Datacenter Performance Analysis of a Tensor Processing Unit”

HBM

Processing
Element

Scratch Pad

HW: Simplified Version

Processing
Element

Scratch pad

Memory

HBM (High
Bandwidth
Memory)

Size: scratch pad <<< HBM

Latency: scratch pad <<< HBM

• Scratch pads are not caches
• Software Programmable
• Uses Direct Memory Access transfers

Programming Model

• K1 executes

• Writes back results to HBM

• K2 executes

• Writes back results to HBM

• Fused Operator Executes

• Writes back results to HBM

• Intermediates can be stored in
HBM or Scratchpad

Operator Fusion

Which is faster? Usually

1 2

2

Operator Fusion

1 2

Written to HBM
Written to HBM

Operator Fusion

1 2

Fusion is not always profitable!
Typical type II Optimization

Operator Fusion

https://www.youtube.com/watch?v=u3cWOd99xX0

Graph Simplifications

https://cs.stanford.edu/~padon/taso-sosp19.pdf
TASO [SOSP’19]

• expressed as computational graph rewrites

Operator Placement

Mirhoseini et. al “Device Placement Optimization with Reinforcement Learning”
11/03 Reading

Graph Computing

• Models computations on graph structured data

• Vertex centric or Edge centric

• Plenty of domain specific optimizations

• Push / Pull optimizations

• Vertex Reordering

• Graph Segmentation etc…

Optimizations on Graphs

https://www.youtube.com/watch?v=7vpZRswS9kw

Auto-tuning for graphs
• We have a separate lecture on auto-tuning

• Challenging

• Highly input sensitive (e.g. power-law graphs vs road graphs)

• Dependent on the graph algorithm (e.g. Page rank vs BFS)

• Dependent on hardware (e.g. GPUs vs CPUs)

• Meng et. al “A pattern based algorithmic autotunes for graph
processing on GPUs”

Sparse Computations
• Few primitive kernels used heavily in ML as well as in traditional HPC.

• Sparse Matrix Vector Multiplication (SpMV)

• Sparse Matrix Dense Matrix Multiplication (SpMM)

• Sampled Dense-Dense Matrix Multiplication (SDDMM)

Jaeyeon et. al. "WACO: Learning Workload-Aware Co-optimization
of the Format and Schedule of a Sparse Tensor Program”

ML in Architecture

22

Memory Subsystem

• Usually CPU arithmetic capacity is far greater than the memory bandwidth
or latency

• We can optimize memory performance by exploiting

• Spatial Locality

• Temporal Locality

• This gave rise to caches and cache hierarchies

Caches

Registers

L2 cache

CPU

L1 cache

L3 cache DRAM

Size: Registers < L1 cache < L2 cache < L3 cache < DRAM
Latency: Registers < L1 cache < L2 cache < L3 cache < DRAM

Caches

• Hold a portion of the data from memory for faster access

• The space is caches is limited, so determining what data it holds is important

• We want to maximize cache-hit rate

• Cache replacement policies are important in determining the cache-hit rate

• 11/30 - we are going to discuss learned replacement policies

 ML in Architecture: good idea?
• Depends

• Assume you are including a Neural Network (NN) in HW

• Implementing NN in takes area

• Adds execution latency / clock cycles get longer

• May be a too heavy of a hammer

• Designing new hardware: Great Choice!

• We are reading papers on 11/14 and 11/16 about Design Space
Exploration

Branch Prediction

• Determines which instructions to fetch on a conditional branch

• If wrong instructions are fetched and executed entire processor pipeline
should be flushed — Costly!

• Early work on using ML for branch prediction, Jimenez and Lin
“Dynamic Branch Prediction with Perceptrons”

HPCA 2019 Test of Time award

Dynamic Branch Prediction with Perceptrons

• Why perceptrons? Can be efficiently implemented in hardware

https://www.theregister.com/2016/08/22/samsung_m1_core/

Dynamic Branch Prediction with Perceptrons

1

2

3
4

5

6

If the predictor is right If the predictor is wrong or within threshold

Dynamic Branch Prediction with Perceptrons

No training needed! Wi When t and xi same sign

When t and xi opposite signs Wi

Any Questions?

31

