CS 598CM: ML for Compilers and Architecture **Instructor: Charith Mendis**

Brief Announcements

- Paper Selections: Due on today, presentations start Sept 12th
- Paper Reviews:
 - Due for each paper 2 days prior to the discussion date
 - Instructions will emailed before class next week
- related work!

• **Campuswire:** Let's use Campuswire to discuss papers and more ML

- Anatomy of a compiler optimization pass
- Domain Specific Languages

Recap

Lecture 4: DSLs + ML in Architecture

Deep Learning Stack

Workload

Language

Compiler

Computational Graphs

A data-flow graph with tensor operations

Example: Inception

Can grow to 1000s of nodes

Szegedy et. al "Going Deeper with Convolutions"

Optimization: Operator Fusion

Zhou et. al "Transferable Graph Optimizers for ML Compilers"

HW: Tensor Processing Unit

Jouppi et. al "In-Datacenter Performance Analysis of a Tensor Processing Unit"

HW: Simplified Version

- Size: scratch pad <<< HBM **Latency:** scratch pad <<< HBM

- Scratch pads are not caches Software Programmable Uses Direct Memory Access transfers

- K1 executes
- Writes back results to HBM
- K2 executes
- Writes back results to HBM

- Fused Operator Executes
- Writes back results to HBM
- Intermediates can be stored in HBM or Scratchpad

Which is faster?

Fusion is not always profitable! Typical type II Optimization

LLVM EUROPEAN DEVELOPER'S MEETING

Automated GPU Kernel Fusion with XLA

HLO IR

Sample HLO ops

- Elementwise math Add, Tanh, Map
- Spezialized math for neural nets Dot, Convolution, Reduce
- Re-organize data
 - Reshape, Broadcast, Concat, Tuple
- Control flow •
- Data transfer •
 - Parameter, Constant

LLVM.ORG

- While, Call, CustomCall

Sample data types

- Primitive types
 - PRED
 - F16
 - F32
- Composite types
 - array: F32[2,3], F16[]
 - tuple: TUPLE(F32[16], F16)

Graph Simplifications

(a) Associativity of matrix multiplication.

(b) Fusing two matrix multiplications using concatenation and split.

expressed as computational graph rewrites

TASO [SOSP'19]

https://cs.stanford.edu/~padon/taso-sosp19.pdf

Figure 4. RL-based placement of Neural MT graph. Top: encoder, Bottom: decoder. Devices are denoted by colors, where the transparent color represents an operation on a CPU and each other unique color represents a different GPU. This placement achieves an improvement of 19.3% in running time compared to the fine-tuned expert-designed placement.

11/03 Reading Mirhoseini et. al "Device Placement Optimization with Reinforcement Learning"

Operator Placement

Graph Computing

- Models computations on graph structured data
- Vertex centric or Edge centric
- Plenty of domain specific optimizations
 - Push / Pull optimizations
 - Vertex Reordering
 - Graph Segmentation etc...

Optimizations on Graphs Graph Processing

93

Auto-tuning for graphs

- We have a separate lecture on auto-tuning
- Challenging
 - Highly input sensitive (e.g. power-law graphs vs road graphs)
 - Dependent on the graph algorithm (e.g. Page rank vs BFS)
 - Dependent on hardware (e.g. GPUs vs CPUs)
- Meng et. al "A pattern based algorithmic autotunes for graph \bullet processing on GPUs"

Sparse Computations

- - Sparse Matrix Vector Multiplication (SpMV)
 - Sparse Matrix Dense Matrix Multiplication (SpMM)
 - Sampled Dense-Dense Matrix Multiplication (SDDMM)

Few primitive kernels used heavily in ML as well as in traditional HPC.

Jaeyeon et. al. "WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program"

ML in Architecture

- or latency
- We can optimize memory performance by exploiting
 - Spatial Locality
 - Temporal Locality
- This gave rise to caches and cache hierarchies

Memory Subsystem

Usually CPU arithmetic capacity is far greater than the memory bandwidth

Size: Registers < L1 cache < L2 cache < L3 cache < DRAM Latency: Registers < L1 cache < L2 cache < L3 cache < DRAM

Caches

- Hold a portion of the data from memory for faster access
- The space is caches is limited, so determining what data it holds is important
- We want to maximize cache-hit rate
- Cache replacement policies are important in determining the cache-hit rate
- **11/30** we are going to discuss learned replacement policies

ML in Architecture: good idea?

- Depends
 - Assume you are including a Neural Network (NN) in HW
 - Implementing NN in takes area
 - Adds execution latency / clock cycles get longer
 - May be a too heavy of a hammer
 - Designing new hardware: Great Choice!
 - We are reading papers on 11/14 and 11/16 about Design Space Exploration

- Determines which instructions to fetch on a conditional branch
- If wrong instructions are fetched and executed entire processor pipeline should be flushed — Costly!
- Early work on using ML for branch prediction, Jimenez and Lin **"Dynamic Branch Prediction with Perceptrons"**

Branch Prediction

HPCA 2019 Test of Time award

Dynamic Branch Prediction with Perceptrons

• Why perceptrons? Can be efficiently implemented in hardware

Secrets of Exynos M1 cores spilled

$$y = w_0 + \sum_{i=1}^n x_i w_i.$$

PERSONAL TECH *

'Neural network' spotted deep inside Samsung's Galaxy S7 silicon brain

https://www.theregister.com/2016/08/22/samsung_m1_core/

Dynamic Branch Prediction with Perceptrons

$$y = w_0 + \sum_{i=1}^n x_i w_i.$$

if
$$extsf{sign}(y_{out})
eq t extsf{ or } |y_{out}| \leq heta$$
 then for $i := 0$ to n do $w_i := w_i + t x_i$ end for end if

Dynamic Branch Prediction with Perceptrons

- if sign $(y_{out}) \neq t$ or $|y_{out}| \leq \theta$ then for i := 0 to n do $w_i := w_i + tx_i$ end for
- end if

If the predictor is right

No training needed!

If the predictor is wrong or within threshold

- Wi When t and x_i same sign
- When t and x_i opposite signs Wi

Any Questions?