Brief Announcements

• **Paper Selections:** Due on **today**, presentations start **Sept 12th**

• **Paper Reviews:**
 • Due for each paper 2 days prior to the discussion date
 • Instructions will emailed before class next week

• **Campuswire:** Let’s use Campuswire to discuss papers and more ML related work!
Recap

• Anatomy of a compiler optimization pass

• Domain Specific Languages
Lecture 4: DSLs + ML in Architecture
Deep Learning Stack

Workload → Language → Compiler → Hardware

- TensorFlow
- Compiler
- Hardware
Computational Graphs

• A data-flow graph with tensor operations
Example: Inception

Can grow to 1000s of nodes

Szegedy et. al “Going Deeper with Convolutions”
Optimization: Operator Fusion

Zhou et. al “Transferable Graph Optimizers for ML Compilers”
HW: Tensor Processing Unit

Jouppi et. al “In-Datacenter Performance Analysis of a Tensor Processing Unit”
HW: Simplified Version

- **Size:** scratch pad <<< HBM
- **Latency:** scratch pad <<< HBM

- Scratch pads are not caches
- Software Programmable
- Uses Direct Memory Access transfers
Programming Model

- K1 executes
- Writes back results to HBM
- K2 executes
- Writes back results to HBM

- Fused Operator Executes
- Writes back results to HBM
- Intermediates can be stored in HBM or Scratchpad
Operator Fusion

Which is faster?
Usually 2
Operator Fusion

Fusion is not always profitable!
Typical type II Optimization
Operator Fusion

HLO IR

Sample HLO ops
- Elementwise math
 - Add, Tanh, Map
- Spezialized math for neural nets
 - Dot, Convolution, Reduce
- Re-organize data
 - Reshape, Broadcast, Concat, Tuple
- Control flow
 - While, Call, CustomCall
- Data transfer
 - Parameter, Constant

Sample data types
- Primitive types
 - PRED
 - F16
 - F32
- Composite types
 - array: F32[2,3], F16[]
 - tuple: TUPLE(F32[16], F16)
Graph Simplifications

- expressed as computational graph rewrites

(a) Associativity of matrix multiplication.

(b) Fusing two matrix multiplications using concatenation and split.

TASO [SOSP’19]

Operator Placement

Figure 4. RL-based placement of Neural MT graph. Top: encoder, Bottom: decoder. Devices are denoted by colors, where the transparent color represents an operation on a CPU and each other unique color represents a different GPU. This placement achieves an improvement of 19.3% in running time compared to the fine-tuned expert-designed placement.

11/03 Reading

Mirhoseini et. al “Device Placement Optimization with Reinforcement Learning”
Graph Computing

- Models computations on graph structured data
- Vertex centric or Edge centric
- Plenty of domain specific optimizations
 - Push / Pull optimizations
 - Vertex Reordering
 - Graph Segmentation etc…
Optimizations on Graphs

Graph Processing

Better than Frequency-based Reordering
#hits: 4
#misses: 3

Cache
#hits: 5
#misses: 2
Auto-tuning for graphs

• We have a separate lecture on auto-tuning

• Challenging
 • Highly input sensitive (e.g. power-law graphs vs road graphs)
 • Dependent on the graph algorithm (e.g. Page rank vs BFS)
 • Dependent on hardware (e.g. GPUs vs CPUs)

• Meng et. al “A pattern based algorithmic autotunes for graph processing on GPUs”
Sparse Computations

- Few primitive kernels used heavily in ML as well as in traditional HPC.
- Sparse Matrix Vector Multiplication (SpMV)
- Sparse Matrix Dense Matrix Multiplication (SpMM)
- Sampled Dense-Dense Matrix Multiplication (SDDMM)

Jaeyeon et. al. "WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program"
ML in Architecture
Memory Subsystem

• Usually CPU arithmetic capacity is far greater than the memory bandwidth or latency

• We can optimize memory performance by exploiting
 • Spatial Locality
 • Temporal Locality

• This gave rise to caches and cache hierarchies
Caches

Size: Registers < L1 cache < L2 cache < L3 cache < DRAM
Latency: Registers < L1 cache < L2 cache < L3 cache < DRAM
Caches

• Hold a portion of the data from memory for faster access
• The space is caches is limited, so determining what data it holds is important
• We want to maximize cache-hit rate
• Cache replacement policies are important in determining the cache-hit rate
• 11/30 - we are going to discuss learned replacement policies
ML in Architecture: good idea?

• Depends

• Assume you are including a Neural Network (NN) in HW
 • Implementing NN in takes area
 • Adds execution latency / clock cycles get longer
 • May be a too heavy of a hammer

• Designing new hardware: Great Choice!

• We are reading papers on 11/14 and 11/16 about Design Space Exploration
Branch Prediction

• Determines which instructions to fetch on a conditional branch

• If wrong instructions are fetched and executed entire processor pipeline should be flushed — Costly!

• Early work on using ML for branch prediction, Jimenez and Lin “Dynamic Branch Prediction with Perceptrons”

HPCA 2019 Test of Time award
Dynamic Branch Prediction with Perceptrons

- Why perceptrons? Can be efficiently implemented in hardware

\[y = w_0 + \sum_{i=1}^{n} x_i w_i. \]

('Neural network' spotted deep inside Samsung's Galaxy S7 silicon brain
Secrets of Exynos M1 cores spilled

https://www.theregister.com/2016/08/22/samsung_m1_core/
Dynamic Branch Prediction with Perceptrons

\[y = w_0 + \sum_{i=1}^{n} x_i w_i. \]

if \(\text{sign}(y_{out}) \neq t \) or \(|y_{out}| \leq \theta \) then

for \(i := 0 \) to \(n \) do

\[w_i := w_i + tx_i \]

end for

end if
Dynamic Branch Prediction with Perceptrons

\[
\text{if } \text{sign}(y_{out}) \neq t \text{ or } |y_{out}| \leq \theta \text{ then}
\]
\[
\text{for } i := 0 \text{ to } n \text{ do}
\]
\[
w_i := w_i + tx_i
\]
\[
\text{end for}
\]
\[
\text{end if}
\]

If the predictor is right

No training needed!

If the predictor is wrong or within threshold

\[
W_i \uparrow \quad \text{When } t \text{ and } x_i \text{ same sign}
\]

\[
W_i \downarrow \quad \text{When } t \text{ and } x_i \text{ opposite signs}
\]
Any Questions?