CS 598CM: ML for Compilers
and Architecture

Instructor: Charith Mendis

Il ILLINOIS



Brief Announcements

 Paper Selections: Due on presentations start

 Paper Reviews:
 Due for each paper 2 days prior to the discussion date
e |nstructions will emailed before class next week

o« Campuswire: Let’'s use Campuswire to discuss papers and more ML
related work!



Recap

 Anatomy of a compiler optimization pass

 Domain Specific Languages



Lecture 4
DSLs + ML In Architecture




Workload

Deep Learning Stack

Language Compiler

Hardware
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Computational Graphs

* A data-flow graph with tensor operations
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Szegedy et. al “Going Deeper with Convolutions”



Optimization: Operator Fusion

Zhou et. al “Transferable Graph Optimizers for ML Compilers”



HW: Tensor Processing Unit
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Jouppi et. al “In-Datacenter Performance Analysis of a Tensor Processing Unit”



HW: Simplified Version

Processing Scratch pad HBM (I_."gh
Bandwidth
Element Memory
Memory)

Size: scratch pad <<< HBM
Latency: scratch pad <<< HBM

e Scratch pads are not caches
« Software Programmable
 Uses Direct Memory Access transfers



Programming Model

P Op Fusion = === - - ‘
{ K1 } K2 ‘\_) —> .- -y  Fused_K1_K2 '. »C :
P |
- (\_/"
K1 executes  Fused Operator Executes
Writes back results to HBM e Writes back results to HBM
K2 executes e |Intermediates can be stored In

HBM or Scratchpad
Writes back results to HBM



Operator Fusion

.....................

Which is faster?

.....................




Operator Fusion
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\ Written to HBM : Written to HEM



Operator Fusion

..........................................

— Reduce — Sigmoid —— .. Mul Reduce —— Sigmoid

.........................................

Fusion is not always profitable!
Typical type |l Optimization




Operator Fusion

2019 / BRUSSELS

LLVM EUROPEAN DEVELOPER'S MEETING

Automated GPU Kernel
Fusion with XLA

LLVM.ORG



https://www.youtube.com/watch?v=u3cWOd99xX0

Graph Simplifications

X X
t t . .
natmul natml e expressed as computational graph rewrites
N\ /
matmul matmul
/N /N
A B C A B C
source graph: Ax (B x C) target graph: (A xB)x C
(a) Associativity of matrix multiplication.
X Y
X__
X Y split
[ .
matmul
matmul  matmul w
f X \ / concat
Dl o
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source graph target graph
(b) Fusing two matrix multiplications using concatenation and split. TASO [S OSP’1 9]

https://cs.stanford.edu/~padon/taso-sosp19.pdf



Operator Placement

LSTM 2
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Figure 4. RL-based placement of Neural MT graph. Top: encoder, Bottom: decoder. Devices are denoted by colors, where the trans-
parent color represents an operation on a CPU and each other unique color represents a different GPU. This placement achieves an

improvement of 19.3% in running time compared to the fine-tuned expert-designed placement.

11/03 Reading
Mirhoseini et. al “Device Placement Optimization with Reinforcement Learning”



Graph Computing

 Models computations on graph structured data
* \Vertex centric or Edge centric

* Plenty of domain specific optimizations
e Push / Pull optimizations
* Vertex Reordering
 Graph Segmentation etc...



Optimizations on Graphs

Graph Processing

CCCCC

Reordering



https://www.youtube.com/watch?v=7vpZRswS9kw

Auto-tuning for graphs

 \We have a separate lecture on auto-tuning

e Challenging
* Highly input sensitive (e.g. power-law graphs vs road graphs)
 Dependent on the graph algorithm (e.g. Page rank vs BFS)
 Dependent on hardware (e.g. GPUs vs CPUs)

* Meng et. al “A pattern based algorithmic autotunes for graph
processing on GPUs”



Sparse Computations

 Few primitive kernels used heavily in ML as well as in traditional HPC.
e Sparse Matrix Vector Multiplication (SpMV)
o Sparse Matrix Dense Matrix Multiplication (SpMM)
« Sampled Dense-Dense Matrix Multiplication (SDDMM)
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Jaeyeon et. al. "WACO: Learning Workload-Aware Co-optimization
of the Format and Schedule of a Sparse Tensor Program”




ML Iin Architecture



Memory Subsystem

o Usually CPU arithmetic capacity is far greater than the memory bandwidth
or latency

* \We can optimize memory performance by exploiting

« Spatial Locality
 [emporal Locality

* This gave rise to caches and cache hierarchies



Caches

CPU
-Registers
L2 cache - L3 cache DRAM

Size: Registers < L1 cache < L2 cache < L3 cache < DRAM
Latency: Registers < L1 cache < L2 cache < L3 cache < DRAM




Caches

Hold a portion of the data from memory for faster access

The space Is caches is limited, so determining what data it holds is important
We want to maximize cache-hit rate

Cache replacement policies are important in determining the cache-hit rate

11/30 - we are going to discuss learned replacement policies



ML in Architecture: good idea?

e Depends

 Assume you are including a Neural Network (NN) in HW
 Implementing NN In takes area
* Adds execution latency / clock cycles get longer
 May be a too heavy of a hammer

* Designing new hardware: Great Choice!

* \We are reading papers on 11/14 and 11/16 about Design Space
Exploration



Branch Prediction

e Determines which instructions to fetch on a conditional branch

* |If wrong instructions are fetched and executed entire processor pipeline
should be flushed — Costly!

* Early work on using ML for branch prediction, Jimenez and Lin
“Dynamic Branch Prediction with Perceptrons”

HPCA 2019 Test of Time award



Dynamic Branch Prediction with Perceptrons

 Why perceptrons? Can be efficiently implemented in hardware
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{* PERSONAL TECH *}
@ 'Neural network' spotted deep inside Samsung's
Galaxy S7 silicon brain

Secrets of Exynos M1 cores spilled

https://www.theregister.com/2016/08/22/samsung_m1_core/



Dynamic Branch Prediction with Perceptrons

Branch Address ‘ History Register | I Branch Outcome n

Prediction

forz:=0tondo
| Selected Perceptron [ w; = Wy th

end for
<:> end 1f




Dynamic Branch Prediction with Perceptrons

if sign(Yout) # tor [Yyout| < @ then
fore1:=0tondo

w; = w; + tx;
end for
end 1f
If the predictor is right If the predictor is wrong or within threshold
No training needed: Wi T When t and xi same sign

W, l When t and x; opposite signs



Any Questions?



