598CM - Individual Project: Learned Cost Model for TPUs

Fall 2023

1 Logistics

Due: November 24th, 2023

Group Size: individual

Submission: Please read the last section.

2 Introduction

In this project you will a train machine-learning model to predict the best tile size selection
for kernels of full tensor programs, represented as computational graphs. You will be given
a production-quality dataset from Google. We will use a model close to what is suggested
in [1] paper as the baseline. We will release a full grading scheme closer to the deadline
with the baseline scores. There won't be any competitive grading.

3 The Dataset

In this section, we will provide an overview of the parts of the dataset that are relevant
to this project. For more information on the dataset, please consult the original paper
[2]. It is worth mentioning that this is a production-quality dataset that has been used by
Google and which got open-sourced recently.

The dataset, TpuGraphs [2], is a performance prediction dataset on full tensor programs,
represented as computational graphs. Each graph represents the main computation of
an ML program, which is usually one or many training steps or one inference step. The
graphs in the dataset are collected from open-source ML programs, featuring popular
models (e.g., ResNet, EfficientNet, Mask R-CNN, and a large variety of Transformer) for a
wide range of tasks, e.g., vision, NLP, speech, audio, recommendation, and generative AL
Each data sample contains a computational graph, a compilation configuration, and the
execution time when executing the graph when compiled with the given configuration on
a Tensor Processing Unit (TPU) v3 [39], an accelerator for ML workloads [2].

3.1 Tile-Size Selection

In this project, we will only use the subset of the dataset that contains compilation con-
figurations for tile-size selection, i.e., tile configurations. A tile configuration controls the
tile size of each fused subgraph.

Each node in a tensor computation graph represents a tensor operation, such as matrix
multiplication, convolution, element-wise addition, etc. A kernel, represented as a fused
subgraph, is then a fusion of multiple tensor operations. For example, Convolution-
BatchNorm is a common fused kernel that appears in Convolutional Neural Networks.
The most important optimization at the kernel level is tile size selection: selecting the
shape of a tile of the output tensor to maximize compute efficiency of the hardware,



while the required regions of input, output, and intermediate data fit in the local cache or
scratchpad memory
4 A Quickstart on the Infrastructure and Baseline Models

The original authors have open-sourced a repository with some baseline models and a
relevant helpful infrastructure. These should help you get started and they will also allow
you to create the deliverables required for grading easily.

Note that this infrastructure is under early development and thus, somewhat sensitive,
so make sure that you follow the steps exactly! This includes making sure that you use the
same paths that we use. Additionally, if you encounter a bug, please let us know and we
can file a bug report (or a pull request if we fix it) together.

4.1 Clone the Repository

Clone the repository by running;:
git clone https://github.com/google-research-datasets/tpu_graphs

It does not matter where you will clone the repository. But we will need to refer to the
root path of the repository again, and we will refer to it as ROOT_DIR.

4.2 Download the Dataset

Before following the steps below, make sure that there is no directory ~/data. The follow-
ing step will create this directory and download the dataset there.
Now, navigate to ROOT_DIR and run:

python3 echo_download_commands.py | bash

You should be able to find the three following files:
e ~/data/tpugraphs/npz_tile_xla_test.tar
e ~/data/tpugraphs/npz_tile_xla_train.tar
e ~/data/tpugraphs/npz_tile_xla_valid.tar
4.3 Create a Conda Environment
First, create a conda environment as follows:

conda create -n tpugraphs python=3.10
conda activate tpugraphs

conda install -c conda-forge tensorflow
conda install -c conda-forge tqdm

pip install tensorflow_gnn --pre
pip install tensorflow-ranking
conda clean --all


https://github.com/google-research-datasets/tpu_graphs/tree/main

4.4 Train a Baseline Model

Before proceeding, make sure that there is no directory ~/out. The following step will
create this directory and use it to store some files.

We will first train a baseline model with a subset of the dataset (i.e., toy data). Navigate
to ROOT_DIR and run:

python tiles_train.py --model=MLP --toy_data=True

After this completes, you should see the directory ~/out/tpugraphs_tiles. In it, you
should see (at least) the following 3 entries:

1. model_<hash> (this is a directory)
2. run_<hash>. jsonz
3. results_<timestamp>.csv

The last file will not concern us for now.

The <hash> will be some hex hash like: model_d691d986e1e5414ba622691b0a7c5c05.
The two hashes in the two files should match. Every time you train a model, you should
see a new such pair of files. The most important of the two is the model_<hash> directory
because it contains the (weights for the) trained model. But, you still need the matching
run_<hash>. jsonz, so do not delete that.

4.4.1 Full Dataset

Unfortunately, you cannot get the model to output predictions if it is trained on the toy
dataset '. Training on the toy dataset is used only for debugging purposes. So, you need
to train on the full dataset. You can do that just by not providing the toy_data argument,
as in the example below:

python tiles_train.py --model=MLP
This should be fairly quick given that we’re using an MLP.
5 Evaluating your Model

5.1 Generating predictions over the test set

The goal of this step is to run the model over the test set and produce a CSV that has the
top 5 predictions of the model for each kernel. The CSV will look like this:

ID, TopConfigs
tile:x1a:57612df6091fe11c498a48fc069186dc,207;103;161;233;205
tile:xla:89f5c24cf4c3c6d65ffff9c207adc20d,261;221;564;1361;325
tile:x1a:7d314295403544719fc8fb837cd3a953,183;815;889;1225;229
tile:xla:724dbd338923da4d9fa688d5b19a66fc,130;660;2142;1756;1835

The ID column is the ID of the kernel and the TopConfigs column contains exactly 5
numbers for each ID, separated by ;, which are the top 5 choices of the model for this
kernel.

1See this issue if you want more information.


https://github.com/google-research-datasets/tpu_graphs/issues/8

Every time you invoke tiles_train.py?, it produces a file results_<timestamp>.csv,
which contains the predictions of the trained model. However, we will assume that you
don’t have such a file and you only have the trained model.

We created a script that, given a model directory (see previous section), creates a CSV
with the predictions. Clone the following repository:

git clone https://github.com/ADAPT-uiuc/tpu_graphs_scripts

And copy all of its contents to ROOT_DIR. Then, navigate to ROOT_DIR and invoke the
following script:

python tiles_gen_predictions_csv.py --dir ~/out/tpugraphs_tiles/model_<hash>

In the -dir argument, you should provide the path of the model. If you have
been following us, it should look similar to the above. This script should create a file
predictions_output_model.csv (which is similar to results_<timestamp>.csv we men-
tioned above).

Finally, run the following script to get a CSV ready for submission to Kaggle (see next
section; this script just inserts dummy values for the layout task):

python create_kaggle_csv.py

This assumes that you have an input CSV file named predictions_output_model.csvin
the same directory. If you already have a different CSV (e.g., by running tiles_train.py),
then skip the invocation of tiles_gen_predictions_csv.py and just invoke:

python create_kaggle_csv.py --inputcsv path/to/csv

5.2 Get a Kaggle score

There is a Kaggle competition over the test set of this dataset, where you upload your
predictions and you get a score. The highest score wins. We will evaluate (and grade)
your model using this Kaggle score. So, note that you will get graded based on how your
model performs on the real test set, for which even we do not have the labels.

You can follow this link: https://www.kaggle.com/competitions/predict-ai-model-
runtime to view the competition. To get a score, make a Kaggle account, review and
accept the rules of the competition and submit your CSV. This competition involves one
other task on layout selection, but the CSV that our script outputs already has dummy
values for these entries so you do not need to worry about that.

Please note that you can make up to 3 submissions per day.

6 A Closer Look at the Script that Generates Predictions

It is necessary for full marks that your model works with tiles_gen_predictions_csv.py,
as we outlined above. So, we provide a small description of what this script does.
The main() function roughly does the following things, in order:

1. Load the test set (link)
2. Load the Keras model (link)

?Please refer to the previous section for more information on tiles_train.py



https://www.kaggle.com/competitions/predict-ai-model-runtime
https://www.kaggle.com/competitions/predict-ai-model-runtime
https://github.com/ADAPT-uiuc/tpu_graphs_scripts/blob/b38cb3f297a58da63417b599b9e7d33fbe1ddd7c/tiles_gen_predictions_csv.py#L45
https://github.com/ADAPT-uiuc/tpu_graphs_scripts/blob/b38cb3f297a58da63417b599b9e7d33fbe1ddd7c/tiles_gen_predictions_csv.py#L53-L58

3. Find out what model class this model uses and instantiate it (link)
4. Copy the trainable variables from the Keras model (link)

5. Run the forward pass on all the graphs of the dataset and generate predictions/ranks
(link)

For step 2), there is a list of predefined models here that you can use to get started.
You can also train any of them with tiles_train.py. For example, earlier we used the MLP
model because it’s the fastest, but you can e.g., use EarlyJoinSAGE as follows:

python tiles_train.py --model=EarlyJoinSAGE

Theoretically, it does not matter how you train your model as long as you can plug
it into the script. But in practice, it will be easier if you start by modifying one of the
predefined models, making sure that during the process your model outputs the same
things as the predefined models, because in that way you can: (a) train your model using
tiles_train.py and so, also (b) plug it into our script effortlessly.

7 What You Should Turn In

You should turn in the following:

1. A modified version of baselines/tiles/models.py (i.e., this file) with your model
class! This can be a modification of the predefined models or a new class. Note that

technically, we allow you to submit this file unmodified. But this baseline is pretty
bad.

2. A directory containing your model, similar to the model_<hash> directory we saw
above, as well as the matching run_<hash>. jsonz file.

We should be able to swap models.py with your file (number 1) above), and then run
tiles_gen_predictions_csv.py as mentioned above.

References

[1] S. J. Kaufman, P. M. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne, and
M. Burrows. A learned performance model for tensor processing units. In Conference
on Machine Learning and Systems, 2021.

[2] P. M. Phothilimthana, S. Abu-El-Haija, K. Cao, B. Fatemi, C. Mendis, and B. Perozzi.
Tpugraphs: A performance prediction dataset on large tensor computational graphs,
2023.


https://github.com/ADAPT-uiuc/tpu_graphs_scripts/blob/b38cb3f297a58da63417b599b9e7d33fbe1ddd7c/tiles_gen_predictions_csv.py#L60-L70
https://github.com/ADAPT-uiuc/tpu_graphs_scripts/blob/b38cb3f297a58da63417b599b9e7d33fbe1ddd7c/tiles_gen_predictions_csv.py#L78-L83
https://github.com/ADAPT-uiuc/tpu_graphs_scripts/blob/b38cb3f297a58da63417b599b9e7d33fbe1ddd7c/tiles_gen_predictions_csv.py#L85
https://github.com/google-research-datasets/tpu_graphs/blob/2aeef44db4bd3bd630bee5cec191822aa4a8f6ce/tpu_graphs/baselines/tiles/models.py
https://github.com/google-research-datasets/tpu_graphs/blob/2aeef44db4bd3bd630bee5cec191822aa4a8f6ce/tpu_graphs/baselines/tiles/models.py

	Logistics
	Introduction
	The Dataset
	Tile-Size Selection

	A Quickstart on the Infrastructure and Baseline Models
	Clone the Repository
	Download the Dataset
	Create a Conda Environment
	Train a Baseline Model
	Full Dataset


	Evaluating your Model
	Generating predictions over the test set
	Get a Kaggle score

	A Closer Look at the Script that Generates Predictions
	What You Should Turn In

